Multilayer masks most effective at preventing aerosol generation: Study

Sun Online Desk

7th March, 2021 02:42:23 printer

Multilayer masks most effective at preventing aerosol generation: Study

Multilayer masks are most-effective at preventing aerosol generation, says a new study conducted by a team led by researchers at Bengaluru-based Indian Institute of Science (IISc).

The study was carried out in collaboration with scientists in UC San Diego and University of Toronto Engineering.

According to IISc, when a person coughs, large droplets (>200 microns) hit the inner surface of a mask at a high speed, penetrate the mask fabric and break up or “atomise” into smaller droplets, which have a greater chance of aerosolisation and thereby carrying viruses like SARS-CoV-2 with them.

Using a high-speed camera, the team closely tracked individual cough-like droplets impinging on single, double and multi-layered masks, and noted the size distribution of the “daughter” droplets generated after penetration through the mask fabric, an IISc statement said on Saturday.

For single and double-layered masks, most of these atomised daughter droplets were found to be smaller than 100 microns, with the potential to become aerosols, which can remain suspended in the air for a long time and potentially cause infection, the study said.

“You are protected, but others around you may not be,” says Saptarshi Basu, Professor in the Department of Mechanical Engineering and senior author of the study published in ‘Science Advances’.

Triple-layered masks “even those made of cloth” and N95 masks were found to successfully prevent atomisation, and therefore offered the best protection.

The researchers, however, clarify that when such masks are unavailable, even single-layered masks may offer some protection, and hence must be used wherever mandated by health officials.

Face masks can significantly reduce virus transmission by blocking both large droplets and aerosols, but their efficiency varies with the type of material, pore size and number of layers.

The team used a pulsed laser to cast shadows of the droplets, and a camera and zoom lens to capture images at high speeds (20,000 frames per second). Apart from surgical masks, some locally sourced cloth masks were also tested.

Source: PTI